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Let X be a random variable whose distribution is unimodal with mean u.
For r > 0, let A = {E|X - wr}llr. In this paper, we determine a value k

such that
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for all k 2 kr. This improves and extends a recent result of Vysochanskii
and Petunin (1979) who have only considered the case r = 2 with a higher
value for kz. Our proof is also considerably simpler because it uses the
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1. Introduction.

Let X be a real random variable with mean u and let r > 0. Markov's

inequality states that, for every given a and every k > 0,
(1.1) PCIX - a] 2 k) < E(]X - a|D)/K".

' Ifa=z=pand v =2, (1.1) reduces to the usual Tchebyshev inequality. Suppose
now that the distribution of X is unimodal with a mode M. A result attributed

to Gauss (1821) states that
(1.2) P(]X - M| 2 k) < (4/9) E (]X - Mlz)lkz,

for all k > 0. In other words, if a = M, the bound on the right side of (1.1)
' can be reduced by a factor (4/9) when r = 2. As a consequence, if the dis-

v tribution of X is both symmetric and unimodal, then M = u and (1.2) gives
2 2
(1.3 P(|x - ¥} 2 k) < 40°/(9k"),

| where 02 = Var (X). Recently, Vysochanskiif and Petunin (1979) showed that

(1.3) is valid without the assumption of symmetry as long as k 2 v873. In this
paper, we first obtain the factor by which the bound in (1.1) can be impreved
if the distribution is unimodal and a = M, We then show that the ismproved bound
‘ is valid even if a = u as long as k is suitably large. For r = 2, we need

1 | k 2 /1973, which is better than the value vB/3 obtained by Vysocanskii and

Petunin.

2. Preliminaries.

—

In this section we give some results on certain convex sets of distributioms.

DEFINITION 2.1. A distribution function F is said to be unimodal about a

mode M if F is convex on ( - », M) and concave on (M, =).
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Let CM denote the set of all distributions on R that are unimodal sbout M.
Then C“H is clearly convex (under mixtures). It is also closed under weak
conyergence; see Gnedenko and Kolmogorev (1968), Section 32. Llet u“ denote
the set of all uniform distributions on intervals with M as one end point.
Then CM is the closed convex hull of UM Another equivalent statement of this
result is as follows; [see Feller (1971), p. 158].

THEOREM 2.1. A random variable X has a unimodal distribution with mode

Mif, and only if, X is distributed as M + UZ, where U is uniform on (0, 1)
and U, Z are independent.

This theorem enables one to reduce many problems involving unimodal
distributions to those involving uniform distributions.

Let Du denote the set of all distributions on R which have mean u and

finite support. The following lemma is possibly known.

: LEMM. 2.1. Every distribution in D, is a finite convex mixture of one or
wo point distributions with mean u.

v

Proof. Without loss of generality, let y = 0. Let P ¢ Do and let v be
the size of the support of P. The lemma holds if v < 2. Suppose the lemma
i holds for v £ n, where n 2 2. Let Y be a random variable with distribution
i P and suppose Y takes exactly (n ¢ 1) values. Since Y is not degenerste and
E(Y) = 0, we can find a > 0 such that

* EasP(Ye-a) >0andn=sP(Ys=sb) >0,

] Without loss of generality, assume that af 2 bn. Consider the two-point
distribution Po which puts mass a/(a ¢+ b) at the point b mass b/(a + b) at

the point (-a). Then Po has zero mean and
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(2.1) P=aP)+ (1-a)P,

where a = n(a + b)/a. Note that « Po accounts for all the mass at b. It is
clear that a > 0. On the other hand, since Y takes at least 3 values, we

must have £ + n < 1. Therefore

n(ae+bd) man+bn<an+at=a(fEe*n) <a. Thus a <1,

The quantity l’1 in (2.1) is a distribution which puts positive masssat < n points,
since the mass at b is accounted for by aPo. By the induction hypothesis, li'1

is expressible as a mixture of one or two point distributions with zZero mean.
Therefore, by (2.1), P also can be expressed as a mixture of the required type.
The proof of the lemma is now complete.

The following lemma is standard.

LEMMA 2.2, Let r > 0 and let X be a real random variable with EC()X|D) < .

Then we find a sequence of random variables X such that each X takes only a
finite number of values and l!(l)(n - X| r) + 0, Moreover, if r 2 1, then we

can shoose the x“ in such a way that E()S\) = E(X) for all n.

3. The Gauss-Tchebyshev inequality.

The Markov inequality states that
(3.1) PCIX - a| 2 k) s E(|X - a|DIAT,

where X is a real random variable, ac¢ R, r >0 and k > 0., If a = E(X) and
r =2, (3.1) gives the usual Tchebyshev inequality. If X has a distribution
which is unimodal about M, then the bound on the right side of (3.1) can be
reduced by a factor which depends on r. This is made precise by Theorem 3.1.
below. For the special case r = 2, Theorem 3.1 goes back to Gauss (1821).
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THEOREM 3.1. Let X have s distribution which is unimodal about M. Then
for every »> 0 and every k > 0,

T
(3.2) P(IX - M 2 ) s (=T ,(E(l"k; M

Moreover, this bound is sharp.

Procf. Without loss of generality, let M = 0. Since (3.2) is trivially true
if E|X|T = », we assume that E[X|¥ < =. Since X is uwnimodal about zero, by
Theorem 2.1, X has the same distribution as UZ, where U is uniform on (0, 1)
and U, Z are independent. Now E|X|* = E(]Z|T)/(r + 1). Therefore E|Z| < =,
Lemma 2.2 shows that it is sufficient to establish (3.2) in the case where Z
takes only a finite number of values. Now the set of distributions of Z, for
which (3.2) is valid, is clearly convex. Therefore we need only consider the
case where Z is degenerate. Finally, (3.2) is clearly unaffected by a change
of scale. Therefore we may and do assume that Z is degenerate at 1, so that

X has the uniform distribution on (0, 1). In this case, E|X|¥ = 1/(xr + 1) and

J(l-k), i£0<ks1
P(IX| 2 k) =
0o , ifxz21.

Therefore

Ta1-%x) if0<ks1

o » 1f k 2 10

For fixed r, the last quantity becomes maximum when k = r/(r + 1). The maximum

value is rr/(r . l)' ¢ 1. Therefore

r(Ixl 2k s T . gyt EpT EINT,
which proves (3.2). Purther the sbove calculation shows that the bound is

shazp.

e LR PR
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The special case r = 2 gives the Gauss imequality.

COROLLARY 3.1. (Gauss). lf X has a distribution which is unimodal sbout
M, then, for all k > 0,

PCIx - Ml 2 %) < 4 E(IX - MY/ (kD)

COROLLARY 3.2. Let X have a symmetric and unimodal distribution. Let

u = E(X) and az a Var(X). Then, for all k > O,

(3.3) PCX - u] 2 ko) s 4/(9K2). i

Proof. Immediste from corollary 3.1, because M = u.

Recently,Vysochanskii and Petunin (1979) showed that (3.3) holds for
unimodal random variables without the assumption of symmetry provided that
k 2 /(8/3). We improve end generalize their results below (Theorem 3.2).

Our proof is also considerably simpler because we use the convex structures

introduced in Section 2.

THEOREM 3.2. Let X have a unimodal distribution with mean u. Let

.- E(JX - |T). Then, for every k > 0,

e (0]
ikt L) Tl

P(|X - u| 2 k) < max

Proof. Without loss of generality assume that u = 0. Suppose X is
unimodal about M. If O is also a mode of X, then the theorem follows from
Theorem 3.1. So, suppose that X is not unimodal sbout 0. Again, we may assume
that‘ M > 0. By Theorem 2.1, X has the same distribution as M « UZ, where

U is uniform on (0, 1) and U, Z are independent. Now 0 = E(X) = M ¢ %B(Z).
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Fig. 1. Graph of the density f in the proof of Theorem 3.2.
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Therefore E(Z) = -2M. It is clear from Lemma 2.2 that it is sufficient to
prove the theorem in the case where Z takes only a finite number of values.
Moreover, since the mean of X is fixed at 0, the class of distributions of X
for which the theorem holds is convex. Therefore the second assertion of
Lerma 2.2 and Lemma 2.1 show that it is sufficient to prove the theorem in the
case wvhere Z takes exactly two values. We have thus reduced our problem to

the case where X has the density £ given by

f a , if -a<xc«ch,

£f(x) = g8 , if b<e<x<eg,
1 0 , elsewhere

Here a, b, ¢ are suitable positive constants. A graph of f is given in Fig. 1.
Since f is not to be unimodal about 0, we must have c¢ < 8. Further the

condition E(X) = O requires that b < ¢ < a. Three cases arise.

Case 1. Suppose 0 < k < b. Here P[|X| < k] = 2ak and so
1 T
r 20"k pl|x! < k]
3. = = .
.4 lt{qt el €ce)ae HEOYVE T+

Case 2. Suppose b < k < ¢. Here
P{IX] < k] = a(b + k) + 8(k - b),

and

20,ml. ok”ll . B(krd_br*l) .

T
o 1o - S
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Simple algebraic manipulations yield

kK*P{Ix]<k] _ b(8-a) (k*-b%) .
(3.5) t|TEt)at - ._{.Lh_l . ._L_()_}T__L :
lt{<k I ” T

Since a < 8 end 0 < b < k, the right side of (3.5) is positive.
Consider the two cases together. That is, let 0 <k < ¢,

Then (3.4) and (3.5) show that
(3.6) BRIONE m-’%‘—“l
It{<k )

Now

t = Ex|T = lt]T£(e)de + lt]*£(e)at
]k Jt]<k

T,
2 K*P[|x|2k] ‘—‘-%%—‘-‘-‘l- , [using (3.6)].

writing P{|X] < k] = 1 - P[|X] 2 k], we get
‘l’r 2 k¥ [(r—:.T) R'[IX} 2 k] + -G:i—lylo

Therefore

T
(x+l)t -k

3.7 PlIX] 2k} < = =
rk

Case 3. Suppose that ¢ < k. Define a new density g as follows.

y , if0<x<cg,

g(x) = £(x) , elsewhere
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Since g agrees with f outside the interval (0, c), the constant y must satisfy
(3.8) v = 5 £(t)dt = ob + B(c-b).

Now let &= {: |t]Tg(t)at. Then

(r41) (1,-6) = (x+1) [f:t’f(t)dt - ];’trg(t)dt]

r+l

r+l . rol_brﬂ

4 = ab B(c ) - YC

ab™*! « 8(cT* 1™y . cTlabeB(c-b)], [using (3.8)]

Cigfet RS Lyl

T

b(g-a) (cF - b5),

Since a < B and 0 < b < ¢, we see that Gr < tr. Let Y be a random variable

with density g. Since g is unimodal about 0, Theorem 3.1 shows that

3 T
, T T T
= vl 20 < " s 6T F
K

But since k > ¢, the densities g and f agree on the set

(-=, k] v [k, ®). Therefore

T
; (3.9) P{|x| 2 k] = P[]¥] 2 k) < (.r_fr)’ ;§ )

] The theorem now follows from (3.7) and (3.9).

COROLLARY 3.3. Let X be a unimodal random variable with mean u. Let

-kl _.

Ap = {B(|x-u|r))l/t. Then, for every k > 0,

: (r+1) -xF
PlIX-u| 2 ki_] < max ok’ » [?;{“_]r} .
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Proof. Immediate from Theorem 3.2, if we replace k by er and note A¥

Observe that

T
-(29-;'-’-‘— s (E)T whenever k z k, where

(3.10)' K = Erq)rol ! jllr .
b o (ﬂnr

Therefore, the following corollary is immediate.

COROLLARY 3.4. With the same notation as in Corollary 3.3,

P(lx - ul 2 klr) < (;:‘-I-]r kT .

for all k 2 kr’ where kr is given by (3.10).

For a comparison of our results with those given by Vysochanskili sad

Petunin, we write the special cases of the last two corollaries when r = 2.

COROLLARY 3.5, Let X be a unimodal random variable with mean u and

variance az. Then, for every k > 0,

2

(1) p(fx-ul 2ke) smax [, A
2 ok

Consequently, for every k 2 v19/3,

4
(3.12)  p(jx - ol 2 ko) < -7 -

Proof. We only need to note that k, = v19/3.

REMARK. The inequality (3.11) is an improvement of the result of Vysoghanskii
and Petunin (1979). They have (4-k2)/3 in place of our 3-k2/2. Consequently,

they prove (3.12) for all k 2 /873.

. t L]
r

4
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It is to be noted that (3.12) does not hold for all k > 0, if the
distribution is not symmetric. The following detailed analysis of the example
considered by Vysochssalii and Petunin shows that (3.12) can fail if k = 1.385.
We note that 1.385 < /19/3.

EXAMPLE 3.1. Let a 2 1 and consider a random variable X such that
P(X=1) = (g--1)/(a + 1)
and

P(X<x) =2(x+1)/(as1)?, -ac<xcl.

It is easy to check that u = E(X) = 0 and
o® = Var(X) = (2a - 1)/3. Now

a-1 2a-1) _(a-1) (a+3)
P(|X| == av it (a ¢l) (a 1)2 .

We now set ko = 1. That is, k = (1/0). Then

Kp(jx  u] 2ko) = 072 p(jx} 2 1)

3a-1) (a3

y = g(a), say
(2a - 1) (a +1)

The condition g(a) > (4/9) reduces to,
3 2
(3.13) 8a” - 15a” - 54a + 77 < Q,

Numerical calculations show that (3.13) holds for 1.2816 < a < 3.05. Since

k = 6}, we see that (3.12) can fail if .767 S k € 1.385.
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